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ABSTRACT: Semiconducting polymers play an important role in
a wide range of optical and electronic material applications. It is
widely accepted that the polymer ordering impacts charge
transport in such devices. However, the connection between
molecular ordering and device performance is difficult to predict
due to the current need for a mathematical theory of the physics
that dictate charge transport in semiconducting polymers. We
present an analytical and computational description of semi-
crystalline conjugated polymer materials that captures the impact
of polymer conformation on charge transport in heterogeneous
thin films. We first develop an analytical theory for the statistical
behavior of a polymer chain emanating from a crystallite,
predicting the average distance to the first kink that would trap a charge. This analysis is used to define the conditions
where percolation would lead to efficient transport through a semicrystalline material. We then establish a model that predicts the
multiscale charge transport. This model is used to identify the speed limits of charge transport at short and long time scales for
varying fraction of crystallinity. This work provides a rational framework to connect molecular organization to device
performance.

Semiconducting polymers are currently under extensive
investigation for applications in solar cells,1 light-emitting

diodes,2 flexible electronics,3 and biointerfacing.4 The use of
polymers offers a number of advantages over traditional silicon
devices, including flexibility, inexpensive processing, and the
ability to functionalize the materials for various chemical
interactions. Performance has substantially improved in recent
years due to new materials development and improved
processing techniques.5,6 Films that result in the highest
performance typically have a complex semicrystalline morphol-
ogy,7 indicating that considerable performance improvement
can be achieved through optimization of microstructural
properties. To rationally design new materials, it is critical to
establish a predictive model that relates the microstructure of a
polymer film to its transport properties.
Semiconducting polymer thin films usually have ordered

phases with varying degrees of crystallinity scattered through-
out an amorphous polymer matrix. Crystalline areas of the film
are often composed of molecules cofacially stacked in one
direction to give overlap of π-orbitals as well as side chains that
organize in a perpendicular direction.8 It is experimentally
suggested that efficient transport in such films occurs via
connected networks of crystallites.9

In a previous work, we describe transport in the disordered
regions of the polymer starting from a model of chain
conformations.10 Our model distinguishes between on-chain

and interchain transport, in contrast to widely used Gaussian
disorder models, which describe transport as hopping through a
spatially and energetically disordered grid of sites.11−13

Common features of transport in amorphous polymers such
as the Poole-Frenkel electric-field dependence14 and the
observed time-dependent mobility15 are well described using
our polymer-based model.10 Our theoretical description is
based on physically motivated and experimentally measurable
polymer parameters, enabling a predictive approach to
modeling charge transport of such materials.
In this work, we develop a description of semicrystalline

polymer films that is based on the interplay between the
physical properties of the disordered regions and the scattered
crystallites. We show that this model can explain the
percolation behavior of charge mobility as the crystallinity of
the film increases due to connected networks of crystallites. We
analyze the behavior of the tie-molecules between crystallites to
identify conditions for percolation in the film and define speed
limits for charge transport based on specific microstructural
properties.
We develop a model for charge transport in semicrystalline

conjugated polymer thin films, shown schematically in Figure 1.
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The thin film is approximated as a two-dimensional (2D)
material with crystallites that are arranged on a triangular lattice
with center-to-center spacing s. The intercrystallite spacing d
results in a fraction crystallinity f = (π/(2√3))(1 − d/s)2. Our
simple model for the crystallite size, shape, and arrangement
can be replaced by a detailed description that incorporates
microstructural heterogeneity that is experimentally determined
or theoretically predicted. However, our simple approach
enables us to analyze the dominant effects of microstructure
and percolation on charge transport. The orientation of each
crystallite is assumed to be random, indicated by the red lines in
Figure 1. Thus, the orientations of adjacent crystallites are not
correlated.
We describe the amorphous regions of a semicrystalline film

with a 2D analogue of our model of amorphous charge
transport.10 The chain conformations are generated using the
wormlike chain (WLC) model,16,17 where the polymer resists
bending deformation between each monomer and is subjected
to thermal fluctuations with energy kBT. The persistence length
lp scales with the bending rigidity and dictates the length of
chain over which the chain orientation remains correlated. We
use a discrete representation of the WLC with discretization
length l0, resulting in the bending energy
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where ui⃗ is the tangent orientation of the ith segment, N are the
number of segments in the chain, and ϵ=lp/l0 is the bending
rigidity. A chain that emanates from a crystallite (e.g., green
chains in Figure 1) has an initial orientation that is given by the
orientation of the crystallite. A chain that does not emanate
from a crystallite (e.g., yellow chains in Figure 1) has a random
initial orientation. Each chain conformation is selected from a
Boltzmann distribution and subsequently frozen in space,
assuming the conformations in the amorphous region are
vitrified.
Before incorporating charge transport into the model, it is

instructive to explore the connectivity between crystallites.
There are two types of paths along which the charges travel

between crystalline regions. In the first path type, a charge
travels directly on a connecting chain, referred to in this work
as a tie-molecule, from one crystallite to another (illustrated as
path 1 in Figure 1). In the second path type, a charge travels
along a chain in the amorphous phase until it reaches a kink in
the chain, at which point it must pause until it is able to hop to
a different chain and continue to the next crystalline region
(illustrated as path 2 in Figure 1). The transport along path 2 is
significantly slower than that along path 1. Thus, it is important
to identify the conditions that allow for a significant number of
tie-molecules and thereby enable the faster transport of path 1.
A tie-molecule occurs when intercrystallite spacing d does

not include a kink in the chain with respect to the field
direction. We develop an analytical theory to calculate the
average distance a chain extends before a kink occurs. We
define a kink to be the chain position where the tangent vector
becomes perpendicular to the field direction. The total
displacement will additionally depend on the initial orientation
of the chain θ0. The conformational statistics are determined by
a constrained Green’s function
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that gives the probability that a chain segment of length L with
an initial orientation θ0 has a final orientation θ with no kinks
along the segment length L. The average displacement before
reaching a trap is obtained using the constrained Green’s
function Gc. The average displacement for a chain with a kink at
segment length L is determined for an initial orientation θ0
(dictated by the crystallite orientation) and a final orientation θ
that is perpendicular to the field. This average displacement is
statistically weighted by the probability of having the kink at
segment length L, and the total average displacement is
determined by integrating over all chain lengths. The details are
shown in the Supporting Information. More generally we note
that this technique of constraining the statistics of polymer
chains and analyzing the resulting set of conformations can be
widely applied to problems involving constrained geometries.
Figure 2 visualizes this result. A semicrystalline film is shown

for different combinations of bending modulus ϵ and fraction
crystallinity f. The red curves indicate the calculated displace-
ment along the chain before reaching a trap. As the bending
modulus of the chains increases, the average length of the
chains in the field direction also increases, leading to an
elongation of the red curves. Additionally, as we increase the
fraction of crystallites in the film, the distance to a trap
correspondingly increases relative to the intercrystallite spacing
d, and the probability of a chain connecting two crystallites also
increases. For smaller fraction crystallinity, the persistence
length must be significantly larger to obtain continuous
transport by avoiding traps between crystallites. Similarly,
even at high crystallite fractions, chains with a persistence
length slightly higher than the monomer length are barely able
to connect crystals. The controlling parameter for continuous
transport is therefore the ratio of persistence length to
intercrystallite spacing lp/d.
We quantitatively model the transport in a film with both

amorphous and crystalline regions using dynamic Monte Carlo
simulations. We incorporate the circular crystallites of Figure 1
with a transport model based on the 2D WLC. Each crystallite
is randomly oriented with a direction of high mobility and a
perpendicular direction of lower mobility, corresponding to the

Figure 1. Schematic representation of our model showing an array of
crystallites (black circles with center-to-center separation s and
intercrystallite spacing d) whose orientations are indicated by the
red lines. The green chains indicate polymers within the amorphous
region that emanate from a crystal, and the yellow chains are
amorphous polymers that do not emanate from a crystallite. The
external field F drives charge through the semicrystalline material. Path
1 indicates a direct tie line between two crystallites, and path 2 shows a
charge-transport trajectory with a kink, requiring interchain hopping.
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backbone and π-stacking directions, respectively. Inter- and
intrachain hopping rates are determined using a field-depend-
ent Marcus theory between adjacent sites on a polymer chain.18

We use approximately the set of on-chain and interchain
parameters as were fit to experimental data in ref 10 (J0 = 0.08
eV, λ0 = 0.6 eV, γ = 5, Jhop = 0.00035 eV, λhop = 0.8 eV, and l0 =
1 nm). Charge movement in the crystallites is characterized by
two fixed mobility values μ∥ = 0.03 cm2/(V s) and μ⊥ = 0.003
cm2/(V s) rather than hopping transport,19 where the low
values used here account for imperfections in the crystallites.
Our 2D model aims to capture the behavior in a typical
transistor geometry in which mobilities are experimentally
measured. However, our previous modeling efforts of charge
transport in amorphous materials utilize a three-dimensional
(3D) version of the model.10 The 3D and 2D models exhibit
qualitatively similar behaviors for purely amorphous transport.
In the case of polycrystalline materials, the quantitative nature
of the connections between crystallites will change due to the
differences between intercrystallite separation and geometry for
2D and 3D materials.
Mobility from short to long time scales is calculated by

tracking the dynamics of charges moving through an ensemble
of films (i.e., averaged over film realizations). A simulation of a
charge moving through a single film realization involves the
following procedure. For a charge starting in an amorphous
region, the initial chain conformation is generated, and the
charge chooses hopping sites and times with probabilities as
determined by the hopping rates. The charge continues to
move until it either jumps to an adjacent chain in the
amorphous region or it encounters a crystallite. If a charge
jumps to an adjacent chain, the new conformation is generated,
and the process is repeated until the charge reaches a crystallite.
We assume that the charge has entered a crystallite when it
crosses the boundary of a grid point (the black circles of Figure
1). In the crystalline phase, the movement of the charge is

calculated deterministically through a mobility tensor that
combines the external field direction with the crystal
orientation using the parallel and perpendicular mobilities.
Upon leaving the crystallite, a WLC that begins in alignment
with the crystal orientation is generated. The motion is
repeated for a specified length of time. We treat charge motion
along grain boundaries with the same framework: a charge at
the edge can either continue along the exit chain or hop back
into the crystal.
In Figure 3 we show the time-dependent mobility for

semicrystalline films with crystal fractions varying from f = 0.0−

0.9 (the 2D circle packing limit is f = 0.907) for F = 0.075 V/
nm and temperature 300 K. Three relevant mobility values are
evident. In the purely amorphous case ( f = 0.0), at very short
times the transport occurs with an on-chain mobility μchain,
denoted by the dashed-dotted line. At longer times on the
order of 1 μs, a second mobility μhop is reached that includes
the effect of the much slower interchain hopping process in
amorphous polymer films.10 This “inter-chain” mobility μhop is
marked by the dotted line, which is nearly 4 orders of
magnitude lower than the on-chain mobility μchain for the
chosen parameters. Finally, the dashed line marks the value of
the crystalline mobility μcrystal = (μ∥ + μ⊥)/2, which is the
mobility averaged over crystal orientations with respect to the
applied field. At both short and long times, the films that are
highly crystalline are predominantly influenced by the
crystalline mobility μcrystal. On-chain mobilities are measured
at very short times to reach values of 0.01−1 cm2/V s,20−22

while mobilities in crystallites are expected to account for
crystallite disorder.7 Varying the relative values of crystal
mobility, on-chain mobility, and interchain hopping will result
in different time-dependent trends. In particular, as the crystal
mobility approaches the on-chain mobility, the short-time
values for all films reach the on-chain mobility (see Figure S1 in
the Supporting Information).
As we increase the percent crystallinity in the film, the long-

time mobility (at 1.0 μs) is plotted for three different values of
bending modulus in Figure 4 for fixed applied field. We see an
onset of percolation at a percentage of crystallinity that varies
with bending modulus. Below some critical percolation value,
the long-time mobility remains low. Above this value, the
mobility increases up to 2 orders of magnitude for the chosen

Figure 2. Visualization of the distance charges travel after exiting a
crystallite before reaching a morphological trap, for three different
values of bending modulus and fraction crystallinity. The red lines
indicate the orientations of the crystallites, and the field is in the
vertical direction. The red curves represent the average distance that
the chain extends before a trap occurs. Overlap of the red-outlined
cones with crystallites indicate the existence of tie-molecules.

Figure 3. Mobility for different areal coverage of crystallites from
picoseconds to microseconds. The dashed line indicates the crystal
mobility, the dashed-dotted line is the on-chain mobility, and the
dotted line is the interchain hopping mobility.
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parameters. The crystal orientations here are uncorrelated.
Introducing correlations should increase the effects shown in
Figure 4 by reducing traps at misoriented grain boundaries.
Additionally, for sufficiently large fraction crystallinity, includ-
ing correlations will likely produce anisotropic mobility results,
depending on the orientation of the field with respect to the
crystallites. This corresponds to experimental results on
mobility measured parallel and perpendicular to experimental
alignment directions. Future work will explore the influence of
alignment and orientation correlation between crystallites on
the charge transport.
Transport in semicrystalline polymers7,23 has been shown

experimentally to depend in a complex manner on morphology.
It is increasingly possible to control the morphology of polymer
films through processing methods, for example, by solution-
shearing,24 mechanical rubbing,25 or epitaxial growth on
organic crystal substrates.26

By varying the percent crystallinity in the film over time,
Duong et al.9 have demonstrated that the mobility will show a
sharp increase at an onset crystallinity value, consistent with our
model. This onset value was measured to correspond to the
point when the distance between the crystallites d is
approximately equal to the persistence length lp. In Figure 4,
the vertical lines represent the percent crystallinity at which the
intercrystallite spacing equals the persistent length of our
simulated chains (d = lp). These lines correspond approximately
to the value at which the mobility begins to significantly
increase or the onset of percolation.
Our model theoretically captures the complex behavior of

semicrystalline films shown by experiment. The concept of tie-
molecules connecting crystalline regions has been explored
experimentally. Here, we show that by modeling the connecting
amorphous regions as wormlike chains and using a simple grid
of crystalline regions, we can recreate the basic behavior of
crystallite percolation via single connecting polymer chains.
This theory opens up avenues to explore the complex effects of
molecular weight, polydispersity, and applied electric field on
charge mobility. In the case of molecular weight, initial results
of our theory show a characteristic increase of mobility with
molecular weight and then a plateau that is reflected in
experimental data.7 The relationship of this plateau to the
persistence length of the polymer is furthermore a function of

the details of the crystallite morphology and the electric field.
Furthermore, instances of chain ends breaking the tie-molecules
dramatically influences the predicted mobility. These effects will
be explored in more detail in future work.
In accordance with traditional models of percolation and

conductivity,27,28 we can describe the overall conductivity of the
film by adding resistances of the different phases in series or in
parallel. There are three contributions to the overall resistance
in the film and therefore to the shape of Figure 4. The first is
the resistance of the crystallites, which contributes an overall f/
μcrystal in series. We write the contribution of each polymer
similarly as proportional to 1/μchain. Finally, the resistance of
hopping between chains can be thought of as the resistance of
the medium, so we have an additional contribution ∼1/μhop,
where μhop ≪ μcrystal ≪ μchain. Each of these resistances must be
multiplied by different scaling factors indicating the proportion
of current that flows through each one.
For reasonably high fields, we make an analogy to traditional

bond percolation models. We consider two crystallites
connected by a single chain as forming a bond with
conductivity μchain with some probability pc that depends on
the fraction crystallinity. Alternatively, the crystallites must be
connected by an interchain hop and therefore the bond has a
conductivity μhop with probability 1 − pc. We can approximately
calculate the probability of forming a bond for some minimum
intercrystallite spacing d as equal to the probability that there is
a trapless chain of at least length d,

∫ ∫π
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Then, we can write the mobility (here proportional to
conductivity) as
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μ μ μ
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where the factor of f is the fraction of crystalline polymer area.
The resulting predicted values of mobility are shown as the
dotted lines in Figure 4. There is strong agreement in the shape
of the corrresponding curves, indicating the above argument is
reasonable. At larger field strengths, the model coincides with
the simulations at all values of crystallinity (not shown),
indicating that our calculation of the connection probability pc
describes charge motion almost perfectly in the limit of high
field. At the slightly lower fields at which devices are operated,
charges are able to navigate around the occasional kink and
percolate at lower fraction crystallinity.
Previous theoretical discussions of conductivity in conduct-

ing or semiconducting polymers have taken several forms. The
transport in energetically disordered polymer films can be
described as a network of varying resistances where the specific
resistance of each bond relates to the energetic distance from
the Fermi level.29,30 This description offers an understanding of
critical conductance parameters but less insight on the physical
microstructure. Carbone et al.31 describe inter- and intrachain
limits for a coarse-grained diffusion model in the absence of a
field, while Hu et al.32 describe conduction through Gaussian
coil polymer solutions assuming that junctions between
different chains are rapidly connected. Our approach builds
on these works by providing a direct connection between the
microstructure and the transport behavior driven by an external
field.

Figure 4. Long-time mobility for different values of bending modulus
ϵ. The dotted lines indicate the fraction crystallinity values that give an
intercrystallite distance equal to the persistence length of the polymer.
The dashed lines represent the conceptual conductivity model
described in the text.
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In conclusion, we have shown that percolation of charge
transport between crystallites in a semicrystalline semiconduct-
ing polymer is based directly on the properties of tie-molecules.
We use dynamic Monte Carlo simulations to model the
multiscale charge mobility for films of varying crystallite
fractions. We observe three time scales relevant to charge
transport in these materials: transport through the crystal,
transport along the chain, and transport due to slow interchain
hopping. At long time scales and low fraction crystallinity, the
last mobility dominates, while at long times and higher fraction
crystallinity, the on-chain mobility limits transport. Studying
chain conformations analytically allows us to determine the
displacement of charges before reaching a kink in the chain,
resolving the statistical probability of forming tie-molecules that
mark the onset of percolation that dramatically enhances device
performance.
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